MATH 135 - QUIZ 6 - JAMES HOLLAND
 2019-10-15

Question 1. Using implicit differentiation, find the tangent line to $y=(1-x)^{1-x}$ at the point $(0,1)$.

Solution .:

Taking the natural logarithm of both sides of the equation yields that $\ln (y)=\ln \left((1-x)^{1-x}\right)=(1-x) \ln (1-x)$. Implicit differentiation then yields that

$$
\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=-1 \ln (1-x)-\frac{1-x}{1-x}=-\ln (1-x)-1
$$

Therefore $\frac{\mathrm{d} y}{\mathrm{~d} x}=-y \ln (1-x)-y$. At the point $(0,1)$, it follows that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\ln (1)-1=0-1=-1$. Hence the slope of the tangent line is -1 . We are given the point $(0,1)$, so the tangent line is given by $y=-x+1$.

Question 2. For x in $[-2,7]$, calculate the minimum and maximum value of y where $y^{3}=x+1$.

Solution .:

$y=(x+1)^{1 / 3}$, which means $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3}(x+1)^{-2 / 3}$. This is never 0 , but it is undefined when $x=-1$. Hence we will investigate y when x is $-2,-1$, and 7 :

$$
(-2+1)^{1 / 3}=-1 \quad(-1+1)^{1 / 3}=0 \quad(7+1)^{1 / 3}=8^{1 / 3}=2
$$

So -1 is the minimum value of y, and 2 is the maximum value of y.
Alternatively, by implicit differentiation, $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$. Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3 y^{2}}$, which is never 0 , and is undefined iff $y=0$, i.e. $0^{3}=x+1$ meaning $x=-1$. So $x=-1$ is the only critical point, and so we investigate $x=-2$, $x=-1$, and $x=7$:

- $y^{3}=-2+1=-1$ implies $y=-1$;
- $y^{3}=-1+1=0$ implies $y=0$;
- $y^{3}=7+1=8$ implies $y=2$.

So $y=-1$ is the minimum value, and $y=2$ is the maximum value.

